
Diaphora – An IDA Python BinDiffing plugin

Index
Introduction..2

Files distributed with the diaphora distribution...2
Running Diaphora..2

Diaphora quick start...4
Finding differences in new versions (Patch diffing)..4
Ignoring small differences (Finding new functionalities)..10
Porting symbols...12
Diffing huge databases (or exporting smaller .SQLite databases)...15

Heuristics..16
Best matches..16
Partial and unreliabe matches (according to the confidence's ratio):...16
Unreliable matches..18
Experimental (and likely to be removed or moved or changed in the future):..............................18

Introduction

Diaphora is a plugin for IDA Pro that aims to help in the typical BinDiffing tasks. It's similar to
other competitor products and open source projects like Zynamics BinDiff, DarunGrim or
TurboDiff. However, it's able to perform more actions than any of the previous IDA plugins or
projects.

In the next paragraphs, I will describe how to use it in different scenarios.

Files distributed with the diaphora distribution

Diaphora is distributed as a compressed file with various files and folders inside it. The structure is
similar to the following one:

1. diaphora.py: The main IDAPython plugin. It contains all the code of the heuristics, graphs
displaying, export interface, etc...

2. jkutils/kfuzzy.py: This is an unmodified version of the kfuzzy.py library, part of the
DeepToad project, a tool and a library for performing fuzzy hashing of binary files. It's
included because fuzzy hashes of pseudo-codes are used as part of the various heuristics
implemented.

3. jkutils/factor.py: This is a modified version of a private malware clusterization toolkit based
on graphs theory. This library offers the ability to factor numbers quickly in Python and,
also, to compare arrays of prime factors. Diaphora uses it to compare fuzzy AST hashes and
call graph fuzzy hashes based on small-primes-products (an idea coined and implemented by
Thomas Dullien and Rolf Rolles first, authors or former authors of the Zynamics BinDiff
commercial product, in their “Graph-based comparison of Executable Objects – Zynamics”
paper).

4. Pygments/: This directoy contains an unmodified distribution of the Python pygments
library, a “generic syntax highlighter suitable for use in code hosting, forums, wikis or other
applications that need to prettify source code”.

Running Diaphora

Diaphora can only be used by running the script, as of March 2015. Initially, during the BETA
phases, there was support for installing it as a true IDA plugin. However, it causes a lot of
maintenance problems, like finding workarounds for known IDA problems and bugs. As so, and
because during the beta phase more time was expended in finding workarounds to different IDA
bugs and problems with many different versions of IDA than actually fixing bugs on Diaphora, the
support have been dropped. It may be added back again at some point in the future, but is unlikely.

So, in order to run Diaphora, simply, unpack the compressed distribution file wherever you prefer

https://www.google.es/url?sa=t&rct=j&q=&esrc=s&source=web&cd=5&cad=rja&uact=8&ved=0CD4QFjAE&url=http%3A%2F%2Fwww.zynamics.com%2Fdownloads%2Fbindiffsstic05-1.pdf&ei=cMABVfrsCsvlUtSbgtAL&usg=AFQjCNGJtawJ8KQSGGkZYdIOHbE01iz2aA&sig2=Sk74NdohCpMoOiCm8-AkGQ

and directly execute “diaphora.py” from the IDA Pro menu File → Script file. Once the script
diaphora.py is executed, a dialog like the following one will be opened:

This dialog, although it can be a bit confusing at first, is used for both exporting the current IDA
database to SQLite format as well as for performing diffing against another SQLite exported format
database.

The first field, is the path of the SQLite file format database that will be created with all the
information extracted from the current database. The 2nd field is the other SQLite format database
to diff the current database against. If this field is left empty, Diaphora will just export the current
database to SQLite format. If the 2nd field is not empty, it will diff both databases.

The other fields, the check-boxes, are explained bellow:

1. Use the decompiler if available. If the Hex-Rays decompiler is installed with IDA and IDA
Python bindings are available, Diaphora will use the decompiler to get many interesting
information that will help during the bindiffing process.

2. Export only non-IDA generated functions. Self-explanatory, only functions with non IDA
autogenerated names will be exported.

3. Do not export instructions and basic blocks. Export only function summaries. When
exporting huge databases, it may help speeding up operations. However, the diffing
capabilities will be more limited.

4. Use probably unreliable methods. Diaphora uses many heuristics to try to match functions
in both databases being compared. However, some heuristics are not really reliable or the
ratio of similarity is very low. Check this box if you want to see also the likely unreliable

matches Diaphora my find. Unreliable results are shown in a specific list, it doesn't mix the
“Best results” (results with a ratio of 1.00) with the “Partial results” (results with a ratio of
0.50 or higher) or “Unreliable results”.

5. Use slow heuristics. Some heuristics can be quite expensive and take long. For medium to
big databases, it's disabled by default and is recommended to left unchecked unless the
results from a execution with this option disabled are not good enough. It will likely find
more better matches than the normal, not that slow, heuristics, but it will take significantly
longer.

6. Relaxed calculations of difference ratios. Diaphora uses, by default, a kind of aggressive
method to calculate difference ratios between matches. It's possible to relax that
aggressiveness level by checking this option. Under the hood, the function
SequenceMatcher.quick_ratio is used when this option is unchecked and
SequenceMatcher.real_quick_ratio when this option is checked. Also, when the option is
checked, Diaphora will use too the difference ratio of the primes numbers calculated from
the AST of the pseudo-code of the 2 functions, calculating the highest ratio from the AST,
assembly and pseudo-code comparisons.

7. Use experimental heuristics. It says it all: experimental heuristics are enabled only if this
check-box is marked. Disabled by default as they are likely not useful.

8. Ignore automatically generated names. When performing the comparison between
databases, it tells Diaphora to ignore in the “Same name” heuristic functions with the same
IDA's autogenerated name (i.e., when there are two function sub_01020304 in both
databases but they aren't actually the same function). Used only when comparing.

9. Ignore all function names. Just disable the “Same name” heuristic. Used only when
comparing.

10. Ignore small functions. Ignore functions with less than 6 assembly instructions. Used only
when comparing.

Diaphora quick start

Finding differences in new versions (Patch diffing)

In order to use Diaphora we need at least two binary files to compare. I will take as example 2
different versions of the “avast” binary from Avast for Linux x86_64. The files has the following
hashes:

1. c0092cf0cb1286cfd8399681bcab68a4 avast-2014

2. 716ff77e74e47d3ee619df49995536ec avast

The file “avast-2014” is an old version from 2014 and the binary “avast” is the latest version.
Launch IDA Pro for 64 bits (idaq64) and open the file “avast-2014”. Once the initial auto-analysis
finishes launch Diaphora by either running the script “diaphora.py”. The following dialog will
open:

https://docs.python.org/2/library/difflib.html#difflib.SequenceMatcher.real_quick_ratio
https://docs.python.org/2/library/difflib.html#difflib.SequenceMatcher.quick_ratio

We only need to care about 2 things:

1. Field “Export current database to SQLite”. This is the path to the SQLite database that
will be created with all the information extracted from the IDA database of this avast binary.

2. Field “Use the decompiler if available”. If the Hex-Rays decompiler is available and we
want to use it, we will leave this check-box marked, otherwise uncheck it.

After correctly selecting the appropriate values, press OK. It will start exporting all the data from
the IDA database. When export process finishes the message “Database exported.” will appear in
the IDA's Output Window.

Now, close this database, save the changes and open the “avast” binary. Wait until the IDA's auto-
analysis finishes and, after it, run Diaphora like with the previous binary file. This time, we will
select in the 2nd field, the one name “SQLite database to diff”, the path to the .sqlite file we just
exported in the previous step, as shown in the next figure:

After this, press the OK button. It will first export the current IDA database to the SQLite format as
understood by Diaphora and, then, right after finishing, compare both databases. It will show an
IDA's wait box dialog with the current heuristic being applied to match functions in both databases
as shown in the next figure:

After a while a set of lists (choosers, in the HexRays workers language) will appear:

There is one more list that is not shown for this database, named “Unreliable matches”. This list
holds all the matches that aren't considered reliable. However, in the case of this binary with
symbols, there isn't even a single unreliable result. There are, however, unmatched functions in both
the primary (the latest version) and the secondary database (the previous version):

The previous image shows the functions not matched in the secondary database, that is: the
functions removed in the latest version. The second figure shows the functions not matched in the
previous database, the new functions added:

It seems they added various functions to check for SSE, AVX, etc... Intel instructions. Also, they
added 2 new functions called handler and context. Let's take a look now to the “Best matches” tab
opened:

There are many functions in the “Best matches” tab, 2556 functions, and in the primary database
there are 2659 functions. The results shown in the “Best matches” tab are these functions matched
with some heuristic (like “100% equal”, where all attributes are equal, or “Equal pseudo-code”,
where the pseudo-code generated by the decompiler is equal) that, apparently, doesn't have any
difference at all. If you're diffing these binaries to find vulnerabilities fixed, just skip this tab, you
will be more interested in the “Partial matches” one ;) In this tab we have many results:

It shows the functions matched between both databases and, in the description field, it says which
heuristic matched and the ratio of differences. If you're looking for functions where a vulnerability
was likely fixed, this is where you want to look at. It seems that the function “handle_scan_item”,
for example, was heavily modified: the ratio is 0.49, so it means that more than the 49% of the
function differs between both databases. Let's see the differences: we can see then in an assembly
graph, in plain assembly or we can diff pseudo-code too. Right click on the result and select “Diff
assembly in a graph”, the following graph will appear:

The nodes in yellow colour, are these with only minor changes; pink ones, are these that are either
new or heavily modified and the blank ones, the basic blocks that were not modified at all. Let's diff
now the assembly in plain text: go back to the “Partial matches” tab, right click on the function
“handle_scan_item” and select “Diff assembly”:

It shows the differences, in plain assembly, that one would see by using a tool like the Unix
command “diff”. We can also dif the pseudo-code: go back to the “Partial matches” tab, right click
in the function and select “Graph pseudo-code”:

As we can see, it shows all the differences in the pseudo-code in a 2 sides diff, like with the
assembly diff. After you know how the 3 different ways to see differences work, you can choose
your favourite or use all of the 3 for specific cases.

Saving and loading diffing results

Now that we have the diffing results we may want to store the results for checking them later on
instead of re-launching the diffing process. This can be done by clicking on the “IDA View” tab
(required because of IDA's behaviour) and then selecting from the main menu the option Edit →
Plugins → Diaphora - Save Results.

In order to load the results, one need to execute the supplied script “diaphora_load.py” and then
select the previously saved *.diaphora results file.

By the way: in case one closes a single tab it isn't required to relaunch the whole diffing process or
reopen the *.diaphora stored results file, one can simply press the key “F3” or, alternatively, go to
the menu Edit → Plugins → Diaphora – Show Results, it will display again any closed tab.

Ignoring small differences (Finding new functionalities)

Sometimes, you don't need to care about small changes when diffing 2 databases. For example, you
maybe finding just the new features added to this or that program instead of finding bugs fixed in a
product. We will continue with the previous binaries for this example. Go to the tab “Partial
matches” and find the functions “respond” and “scan_reponse”:

According to the ratios shown it seems these functions are almost equal with small changes. Let's
see the differences in the function respond: right click on the respond function and select “Diff
pseudo-code”:

It seems that the only change in this function is, actually, the size of a stack variable and the given
size. If we're looking for the new functionality added to the product, it can be irritating going
through a big list of small changes. We will re-diff both databases: run again Diaphora by executing
diaphora.py and, in the dialog select this time “Relaxed calculations on difference ratios” as shown
bellow:

Press OK and wait for it to finish. When it's finished, go to the “Best matches” tab and find the
“respond” or “scan_response” functions:

This time, as we can see, both functions appear in the “Best matches”, the list of functions that are
considered equal, so you don't need to go through a big list with small changes here and there: the
“Partial matches” tab will show only functions with bigger changes, making it easier to discover the
new functionalities added to the program.

Porting symbols

One of the most common tasks in reverse engineering, at least from my experience, is porting
symbols from previous versions of a program, library, etc... to the new version. It can be quite
frustrating having to port function names, enumerations, comments, structure definitions, etc...
manually to new versions, specially when talking about big reverse engineering projects.

In the following example, we will import the symbols, structures, enumerations, comments,
prototypes, etc... from one version full of symbols to another version with symbols stripped. We
will use Busybox 1.21-1, compiled in Ubuntu Linux for x86_64. After downloading and compiling
it, we will have 2 different binaries: “busybox” and “busybox_unstripped”. The later, is the version
with full symbols while the former is the one typically used for distribution, with all the symbols
stripped. Launch IDA and open, first, the “busybox_unstripped” binary containing full symbols.
Let's IDA finish the initial auto-analysis and, after this, run Diaphora by either running diaphora.py.
In the dialog just opened, press OK:

Wait until Diaphora finishes exporting to SQLite the current database. When it finishes, close the
current IDA database and open the binary “busybox”, wait until IDA finishes the initial auto-
analysis and, then, launch again Diaphora. In the next dialog select as the SQLite database to diff
the previous one we just created, the one with all the symbols from the previous binary:

Press OK and wait until it finishes comparing both databases. After a while, it will show various
tabs with all the unmatched functions in both databases, as well as the “Best”, “Partial” and
“Unreliable” matches tabs.

As we can see, Diaphora did a decent work matching 3112 functions labeled as “Best Matches” and
13 labeled as “Partial matches”, a total of 3125 functions out of 3630. Let's go to the “Best
matches” tab. All the functions here are these that were matched with a high confidence ratio. Let's
say that we want to import all the symbols for the “best matches”: right click on the list and select
“Import *all* functions”. It will ask if we really want to do so: press YES. It will import all function
names, comments at function and instruction level, function prototypes, structures, enumerations,
IDA's type libraries (TILs) and even rename global variables and labels with names. When it's done
it will ask us if we want to relaunch again the diffing process:

While Diaphora imports symbols, at the same time, it updates the database with the exported data
from the primary database and, as so, with the new information it may be possible to match new
functions not discovered before. In this case we will just say “NO” to this dialog.

Now, go to the “Partial matches” tab. In this list we have some matches that doesn't look like good
ones:

As we can see, the ratios are pretty low: from 0.00 to 0.14. Let's diff the graphs of the
“make_device” function (matched with the “same name” heuristic):

It doesn't look like a good match. And, if it's, it's rather big to verify yet. Let's delete this result: go
back to the “Partial matches” tab, select the “make_device” match and, simply, press “DEL”. It will
just remove this result. Now, do the same for the next results with a too low confidence ratio (i.e.,
0.00). OK, we removed the bad results. Now, it's time to import all the partial matches: right click in
the list and select “Import all data for sub_* functions”. It will import everything for functions that

are IDA's auto-named, these that start with the “sub_” prefix but will not touch any function with a
non IDA auto-generated name. It will ask us for confirmation:

Press “Yes”, and wait until it exports everything and updates the primary database. And, that's all!
We just imported everything from function names and comments to structures and enumerations
into the new database and we can just continue with our work with the new database and with all
the data imported from the database we used to worked on before.

Diffing huge databases (or exporting smaller .SQLite databases)

Some IDA databases can be huge: for example, IDA databases for firmware images or IDA
databases for >100MB binaries. In such cases, exporting and diffing big databases takes a lot of
time and space. In order to make it a bit faster and requiring less disk space to store the .sqlite
databases that Diaphora uses the following new options were added in the last release candidate:

• Export only non-IDA generated functions. It will only export the functions that are not
IDA's auto-generated names, thus, exporting only the functions for which we have symbols
or we already assigned a name.

• Do not export instructions and basic blocks. It will export everything about the functions
but will not export basic blocks, basic block's relationships or the instructions of all
functions. It results in less export time as well as in significantly smaller SQLite databases.

Heuristics

Diaphora uses multiple heuristics to find matches between different functions. The next list shows
all the heuristics implemented in the Diaphora Release Candidate 1:

Best matches

• The very first try is to find if everything in both databases, even the primary key values are
equals. If so, the databases are considered 100% equals and nothing else is done.

• Equal pseudo-code. The pseudo-code generated by the Hex-Rays decompiler are equals. It
can match code from x86, x86_64 and ARM interchangeably.

• Equal assembly. The assembly of both functions is exactly equal.

• Bytes hash and names. The first byte of each assembly instruction is equal and also the
referenced true names, not IDA's auto-generated ones, have the same names.

• Same address, nodes, edges and mnemonics. The number of basic blocks, their addresses,
the names of edges and the mnemonics in both databases are equal

• Same RVA and hash. The RVA (Relative Virtual Address) and the bytes hash is the same
for both databases.

• Same order and hash. Both functions have the same bytes hash and were discovered by
IDA at the very same position in the database (i.e., both functions are the 100 th function in
the database).

• Function hash. The calculated function hash is equal for both functions. The hash is
calculated as the MD5 of the concatenation of all the instruction bytes in a function.

• Bytes hash. The calculated bytes hash is equal for both functions. The hash is calculated as
the MD5 of the concatenation of all the instruction bytes in a function but, in opposite to
function hash, it does so by stripping any byte that can be variable depending on the
address of the instruction, like displacements or relative calls and jumps.

• Bytes sum. Both the size of the function in bytes and the summatory of all the bytes in the
function are the same for both functions.

Partial and unreliabe matches (according to the confidence's ratio):

• All or most attributes. All the attributes of a function (basic blocks, primes values, hashes,
etc...), or most of them are equal in both functions.

• Switch structures. The cases and values of all the switch statements in both functions are
equal.

• Same name. The mangled or demangled name is the same in both functions.

• Same address, nodes, edges and primes (re-ordered instructions). The function has the
same address, number of basic blocks, edges and a the prime corresponding to the
cyclomatic complexity are equal. It typically matches functions with re-ordered instructions.

• Import names hash. The functions called from both functions are the same, matched by the
demangled names.

• Nodes, edges, complexity, mnemonics, names, prototype, in-degree and out-degree. The
number of basic blocks, mnemonics, names, the function's prototype the in-degree (calls to
the function) and out-degree (calls performed to other functions) is the same.

• Nodes, edges, complexity, mnemonics, names and prototype. The number of basic
blocks, edges, the cyclomatic complexity, the mnemonics, the true names used in the
function and even the prototype of the function (stripping the function name) are the same.

• Mnemonics and names. The functions have the same mnemonics and the same true names
used in the function. It's done for functions with the same number of instructions.

• Mnemonics small-primes-product. The SPPs, calculated by assigning primes to
mnemonics, in both functions are the same. It's sensible to changes in IDA: if the IDA's API
GetInstructionList(), at some point, reorders the instructions, all exported Diaphora
databases would not be comparable to new databases.

• Small names difference. At least 50% of the true names used in both functions are the
same.

• Pseudo-code fuzzy hash. It checks the normal fuzzy hash (calculated with the DeepToad's
library kfuzzy.py) for both functions.

• Pseudo-code fuzzy hashes. It checks all the 3 fuzzy hashes (calculated with the DeepToad's
library kfuzzy.py) for both functions. This is considered a slow heuristic.

• Similar pseudo-code. The pseudo-code generated by the Hex-Rays decompiler is similar
with a confidence ratio bigger or equal to 0.6. This is considered a slow heuristic.

• Similar pseudo-code and names. Same as before but also the true names used in both
functions are equal.

• Pseudo-code fuzzy AST hash. The fuzzy hash calculated via SPP (small-primes-product)
from the AST of the Hex-Rays decompiled function is the same for both functions. It
typically catches C constructions that are re-ordered, not just re-ordered assembly
instructions.

• Partial pseudo-code fuzzy hash. At least the first 16 bytes of the fuzzy hash (calculated
with the DeepToad's library kfuzzy.py) for both functions matches. This is considered a slow
heuristic.

• Topological sort hash. Both the strongly connected components as well as the topological
sort hash of the graph of both functions are the same.

• Same high complexity, prototype and names. The cyclomatic complexity is at least 20,
and the prototype and the true names used in the function are the same for both databases.

• Same high complexity and names. Same as before but ignoring the function's prototype.

• Strongly connected components. The sets of strongly connected components of the graph
are the same in both databases. This is considered a slow heuristic.

• Strongly connected components small-primes-product. The SPP calculated by assigning
prime numbers to each strongly connected component for each set of strongly connected
components in the graph is the same for both functions.

• Loop count. The number of loops (more than 1) in the function is the same for both
databases and the confidence ratio is at least 0.49. This is considered a slow heuristic.

• Same nodes, edges and strongly connected components. The number of basic blocks,
relationships between them and the sets of strongly connected components in the function
graph are the same for both functions.

Unreliable matches

• Strongly connected components. The sets of strongly connected components are the same
and, at least, there are 2 components. This is considered a slow heuristic.

• Loop count. The number of loops is the same for both functions. The comparison is made
without checking the number of basic blocks. This is considered a slow heuristic.

• Nodes, edges, complexity and mnemonics. The number of basic blocks, relations, the
cyclomatic complexity (naturally) and the mnemonics are the same. It can match functions
too similar that actually perform opposite operations (like add_XXX and sub_XXX).

Besides, this is considered a slow heuristic.

• Nodes, edges, complexity and prototype. Same as before but the mnemonics are ignored
and only the true names used in both functions are considered. This is considered a slow
heuristic.

• Nodes, edges, complexity, in-degree and out-degree. The number of basic blocks, edges,
cyclomatic complexity (naturally), the number of functions calling it and the number of
functions called from both functions are the same. This is considered a slow heuristic.

• Nodes, edges and complexity. Same number of nodes, edges and, naturally, cyclomatic
complexity values. This is considered a slow heuristic.

• Similar pseudo-code. The pseudo-codes are considered similar with a confidence's ratio of
0.58 or less. This is considered a slow heuristic.

• Same high complexity. Both functions has the same high cyclomatic complexity, being it at
least 50. This is considered a slow heuristic.

Experimental (and likely to be removed or moved or changed in the future):

• Call address sequence. Check for similar or equal functions by sequentially looking over
all the list of matches (both “Best” and “Partial”). The current implementation is far from
being “good” but still works. However, as it isn't working properly all the time, it's
considered an experimental heuristic.

• Small pseudo-code fuzzy AST hash. Same as “Pseudo-code fuzzy AST hash” but applied
to functions with less or equal to 5 lines of pseudo-code. Like the previous heuristic, it
matches too many things and the calculated confidence's ratio is typically bad..

• Similar small pseudo-code. Even worst than “Similar small pseudo-code”, as it tries to
match similar functions with 5 or less lines of pseudo-code, matching almost anything and
getting confidence's ratios of 0.25 being lucky.

• Equal small pseudo-code. Even worst than before, as it matches functions with the same
pseudo-code being 5 or less lines of code long. Typically, you can get 2 or 3 results, that are,
actually, wrong.

• Same low complexity, prototype and names. The prototype of the functions, the true
names used in the functions and its cyclomatic complexity, being it less than 20, is the same.
It worked for me once, I think.

• Same low complexity and names. The cyclomatic complexity, being it less than 20, and the
true names used in the function are the same. It typically matches functions already matched
by other heuristics, so it's usefulness is really limited.

• Same graph. By looking to most attributes of the functions, the graph seems to be the same
in both databases. It's a really slow heuristic that causes some false positives and for huge
databases might cause the comparison to even crash because SQLite requires more than
3GB of memory (if the IDA process is a 32 bit, the default as of 2016).

	Introduction
	Files distributed with the diaphora distribution
	Running Diaphora

	Diaphora quick start
	Finding differences in new versions (Patch diffing)
	Saving and loading diffing results
	Ignoring small differences (Finding new functionalities)
	Porting symbols
	Diffing huge databases (or exporting smaller .SQLite databases)

	Heuristics
	Best matches
	Partial and unreliabe matches (according to the confidence's ratio):
	Unreliable matches
	Experimental (and likely to be removed or moved or changed in the future):

