Alex Ionescu’s Blog

Windows Internals, Thoughts on Security, and Reverse Engineering

« How Control Flow Guard Drastically Caused Windows 8.1 Address Space and Behavior Changes
What are Little PatchGuards Made Of? »

Analyzing MS15-050 With Diaphora

One of the most common ways that I glean information on new and upcoming features on releases of
Windows is obviously to use reverse engineering such as IDA Pro and look at changed functions and
variables, which usually imply a change in functionality.

Of course, such changes can also reveal security fixes, but those are a lot harder to notice at the
granular level of diff-analysis that I perform as part of understanding feature changes.

For those type of fixes, a specialized diffing tool, such as BinDiff is often used by reverse engineers
and security experts. Recently, such tools have either become obsoleted, abandoned, or cost
prohibitive. A good friend of mine, Joxean Koret (previously of Hex-Rays fame, un-coincidentally),
has recently developed a Python plugin for IDA Pro, called “Diaphora®, (diafora, the Greek word for
“difference”).

In this blog post, we’ll analyze the recent MS15-050 patch and do a very quick walk-through of how
to use Diaphora.

Installation

Installing the plugin is as easy as going over to the GitHub page, cloning the repository into a .zip file,
and extracting the contents into the appropriate directory (I chose IDA’s plugin folder, but this can be
anything you wish).

As long as your IDA Python is configured correctly (which has been a default in IDA for many
releases), clicking on File, Script file..., should let you select a .py file

http://www.alex-ionescu.com/
http://www.alex-ionescu.com/?p=246
http://www.alex-ionescu.com/?p=290
https://www.hex-rays.com/products/ida/
http://www.zynamics.com/bindiff/manual/
http://joxeankoret.com/
http://joxeankoret.com/blog/2015/03/13/diaphora-a-program-diffing-plugin-for-ida-pro/
https://technet.microsoft.com/en-us/library/security/ms15-050.aspx
https://github.com/joxeankoret/diaphora
https://github.com/joxeankoret/diaphora/archive/master.zip

i 2 Run script x|

(-} = T . « plugins » diaphora-master v & Search diaphora-raster L
Organize « Mew folder ==~ [@
P
o . -
‘v Favorites Mame Date modified Type Size
B Desktop J doc 5/14/2015 8:33 AM File folder
4 Downloads J jkutils ! File folder
& iCloud Drive , others 5/14/2015 833 AM File folder
% iCloud Photos | pygments 5142015 2:33 AM File folder
= Recent places diaphora.py 5/14/2015 8:33 AM Python File 109 KB
w
File narme: | diaphora.py w | | Script files (".idc *.py) W

Generating the initial baseline

The first time you run Diaphora, you’ll be making the initial SQLite library. If you don’t have Hex-
Rays, or disable the “Use the decompiler if available” flag, this process only takes a few seconds.
Otherwise, with Hex-Rays enabled, you’ll be spending more of the time waiting for the decompiler to
run on the entire project. Depending on code complexity, this could take a while.

This SQLite library will essentially contain the assembly and pseudo-code in a format easily parsable
by the plugin, as well as all your types, enumerations, and decompiler data (such as your annotations
and renamed variables). In this case, | had an existing fairly well-maintained IDB for the latest version
of the Service Control Manager for Windows 7 SP1, which had actually not changed since 2012. My
pseudo-code had over 3 years to grow into a well-documented, thoroughly structured IDA database.

Diff me once, importing your metadata

On the second run of Diaphora (which at this point, should be on your new, fresh binary), this is
where you will direct it to the initial SQLite database from the step above, plus select your diffing
options. The default set I use are in the screenshot below.

t 8+ ‘G+1 0

http://www.alex-ionescu.com/wp-content/uploads/diaphora5.png
https://msdn.microsoft.com/en-us/library/windows/desktop/ms685150%28v=vs.85%29.aspx
http://www.twitter.com/aionescu
http://www.google.com/+AlexIonescuLovesWindows
http://www.daddydesign.com/wordpress/social-toolbar-wordpress-plugin/
https://twitter.com/intent/tweet?original_referer=http%3A%2F%2Fwww.alex-ionescu.com%2F%3Fp%3D271&ref_src=twsrc%5Etfw&text=Analyzing%20MS15-050%20With%20Diaphora%20%C2%AB%20Alex%20Ionescu%E2%80%99s%20Blog&tw_p=tweetbutton&url=http%3A%2F%2Fwww.alex-ionescu.com%2F%3Fp%3D271&via=aionescu

x

Please select the path to the SOLite database to save the current IDA database and the path of the
S0Lite database to diff against. If no SOLite diff database is selected, it will just export the current IDA
database to SQLite format. Leave the 2nd field empty if you are exporting the first database.

S0Lite databases:
Export IDA database to SCQLite I C:\Uszersljonescu\Desktopservices-new. sglite LI E

SQLite database to diff against I Cisersljonescu\Desktopservices, sglite LI |

¥ Use the decompiler if available
[Export only non-IDA generated functions

[™ Do not export instructions and basic blocks
Export filter limits:

¥ Use probably unrelisble methods
From address | .idata:01001000 =]

¥ Use slow heuristics

[Relaxed calculations of differences ratios To address I 0:01033000 LI

[T Use experimental heuristics
¥ Ignore automatically generated names

[Ignore all function names

MOTE: Don't select IDA database files (. IDB, .164) as only SQLite databases are considered.

QK | Cancel |

This second run can take much longer than the first, because not only are you taking the time to
generate the a second database, but you are then running all of the diffing algorithms that Diaphora
implements (which you can customize), which can take significantly longer. Once the run is complete,
Diaphora will show you identical code (“Best Matches”), close matches (“Partial Matches”), and
Unidentifiable Matches. This is where comparing a very annotated IDB with a fresh IDB for purposes
of security research can have problems.

Since I renamed many of the static global variables, any code using them in their renamed format
would appear different from the original “loc_325345" format that IDA uses by default. Any function
prototypes which I manually fixed up would also appear different (Hex-Rays is especially bad with
variable argument stdcall on x86), as well any callers of those functions.

So in the initial analysis, I got tons of “Partial Matches” and very few “Best Matches”. Nothing was
unmatched, however.

One of the great parts of Diaphora, however, is that you can then confirm that the functions are truly
identical. Since we’re talking about files which have symbols, it makes sense to claim that
ScmFooBar is identical to ScmFooBar. This will now import all the metadata from your first first IDB
to the other, and then give you the option of re-running the analysis stage.

At this point, I have taken all of the 3 years of research I had on one IDB, and instantly (well, almost)
merged it to a brand new IDB that covers a more recent version of the binary.

Diff me twice, locating truly changed code

Now that the IDBs have been “synced up”, the second run should identify true code changes — new
variables that have been added, structures that changed, and new code paths. In truth, those were

http://www.alex-ionescu.com/wp-content/uploads/diaphora4.png

identified the first time around, but hidden in the noise of all the IDB annotation changes. Here’s an
incredible screenshot of what happened the second time I ran Diaphora.

First, note how almost all the functions are now seen as identical:

DA View-A || | Pseudocode-A || | Diff pseudo-code ScStatusAccessCheck - ScStatusAccessCheck || Best matches [| Partial matches ||
Line Address Mame Address 2 Mame 2 Ratio Description

And then, on the Partial Matches tab... we see one, and only one function. This is likely what MS15-
050 targeted (the description in the Security Bulletin is that this fixed an “Impersonation Level
Check” — the function name sounds like it could be related to an access check!).

DA view-A || I Pseudocode-A || I Diff pseudo-code ScStatusAccessCheck - ScStatusAccessCheck || I Best matches || Partial matches [

Description

01007c35 AU... 0.970 Perfect match, same name

Now that we have our only candidate for the fix delivered in this update, we can investigate what the
change actually was. We do this by right-clicking on the function and selecting “Diff pseudo-code”.
The screenshot below is Diaphora’s output:

£1 MACRO ERROR_CODE _ stdeall SeStatuskecessCheck (DWORD Returnlength) £l MRCRO ERROR_CODE __ stdcall ScStatuskccessCheck (DWORD Returnlength)
z -
3 struct_ServiceRecord *ServiceRecord; // esi@l 3 struct_ServiceRecord *ServiceRecord; // esi@l
4 HRNDLE hThread; // eax@3 4 HANDLE hThread; // eax@3
=) struct_WPP_CLOBAL Control **wpplontrol; // ebx@4d s struct_WPP GLOBAL Control **wppControl; // ebx@4
ns LUID *luidToCheck: // eax@7 MRPDST ng LUID *luidToCheck; // eax@& MAPDST
7 MRCRO_ERROR _CODE result; // eax@l5 MADDST 7 MRCRO_ERROR_CODE result; // eax@l4 MAPDST
a TOEEN STATISTICS TokenInformation; // [sptB8h]l [bp-44h]l@4 =] TCEEN_STATISTICS TokenInformaticn; // [sp+8h]l [bp-44h]@4
n3 LUID systemluid; /7 [spt+40h]l [bp-Chl@7 a3 LUID systemluid; /7 [spt40h] [bp-Chl@s
10 HRWDLE TokenHandle; // [sp+48h] [bp-4h]@1 10 HANDLE TokenHandle; // [sp+48h] [bp-4h]@1
11 11
12 ServiceRecord = (struct_ServiceRecord *)ReturnLength; 12 ServiceRecord = (struct_ServiceRecord *)ReturnLength;
13 TckenHandle = 0; 13 TckenHandle = 0;
14 if { !Returnlength || *{_DWORD *) (Returnlength + ZB)) 14 4if (!Returnlength || *{_DWORD *) (ReturnLength + Z8))
15 | 15
16 result = BpelmperscnateClient (0); 16 result = BpelmperscnateClient (0);
17 if { result) 17 if { result)
1z { 18 {
13 ScLoglmperscnateFailureEvent (result); 13 ScloglmpersonateFailureEvent (resuls);
z0 1 z0 1
21 else 21 else
2z { 22 {
23 hThread = GetCurrencThread(); 23 hThread = GetCurrentThread();
24 if | CpenThreadToken(hThread, Su, 1, sTckenHandle)) Z4 if (OpenThreadToken(hThread, Su, 1, &TokenHandle)
25 { 25 1
28 wppControl = SWPP_GLOBAL_Control; 28 wpptontrel = &WPP_GLOBAL Control;
27 if (GCetTokenInformation(TokenHandle, TokenStatistics, &TokenInformation, |27 if (GetTeokenInformaticon(TokenHandle, TokenStatisties, &TckenInformation,
z8 { 28 {
29 systemLuid_HighPBart = 0; 23 systemluid.HighPart = 0;
20 systemluid.LowPart = Ox3E7; 20 systemluid.LewPart = Ox3ET;
n3l if (TokenInformation.TockenIype == Tokenlmperscnation a3l if { ServiceRecord)
32 && TokenIs on. T ionLevel < SecurityImpersconation 3z luidToCheck = &ServiceRecord-»ImageRecord->Rccountluid;
23 else
34 luidToCheck = &systemluid;
35 if (TokenInformation Ruthenticationld LowPart != luidToCheck->LowPart
33 |l {ServiceRecord ? (luidToCheck = &ServiceRecord->ImageRecord— 3& |l {ServiceRecord ? (luidToCheck = &ServiceRecord->ImageRecord-
>AccountLuid) - (luidToCheck = &systemLuid), rReoountluid) :© (luidTeoCheck = &systemluid),
&34 Tokenl: ion icationId.LowPart != luidToCheck->LowPart £
35 Il {ServiceRecord ? (luidToCheck = &ServiceRecord-rImageRecord-
>Accountluid] : (luidToCheck = &systemluid),
=1 TokenInformation.RuthenticationIld.HighPart != luidToCheck->HighD: 37 TekenInformation.luthenticationId.HighPart != luidToCheck->HighPa
37 { as {
28 Returnlength = ERROR_ACCESS_DENIED; = Returnlength = ERROR_ACCESS_DENIED;
as 1 40 }
40 else 41 else
a1 { az {
42 ReturnLength = N0 ERROR; 43 Returnlength = NO_ERROR;
43 1 44 1

Conclusion

http://www.alex-ionescu.com/wp-content/uploads/diaphora2.png
http://www.alex-ionescu.com/wp-content/uploads/diaphora3.png
http://www.alex-ionescu.com/wp-content/uploads/diaphora1.png

At this point, the vulnerability is pretty clear. In at least some cases where an access check is being
made due to someone calling the Service Control Manager, the impersonation level isn’t verified —
meaning that someone with an Anonymous SYSTEM token (for example) could pass off as actually
being a SYSTEM caller, and therefore be able to perform actions that only SYSTEM could do. In
fact, in this case, we see that the Authentication ID (LUID) of 0x3E7 is checked, which is actually
SYSTEM_LUID, making our example reality.

At this point, I won’t yet go into the details on which Service Control Manager calls exactly are
vulnerable to this incorrect access check (ScAccessCheck, which is normally used, actually isn’t
vulnerable, as it calls NtdccessCheck), or how this vulnerability could be used for local privilege
escalation, because I wanted to give kudos to Joxean for this amazing plugin and get more people
aware of its existence.

Perhaps we’ll keep the exploitation for a later post? For some ideas, read up James Forshaw’s
excellent Project Zero blog post, in which he details another case of poor impersonation checks in the
operating system.

This entry was posted on Thursday, May 14th, 2015 at 11:22 am and is filed under Uncategorized. You can follow any
responses to this entry through the RSS 2.0 feed. You can leave a response, or trackback from your own site.

3 Responses to “Analyzing MS15-050 With Diaphora”

1. adi says:
May 16, 2015 at 5:17 am

I’m new to this stuff...... so the left version is the correct/patched version, right? because I see
that on the left there is a check on impersonation level......
Thanks!

2. OxFEEEFEEE says:
June 23. 2015 at 3:34 am

Just curious, what’s the tool’s name in the last screen shot for using diff?

3. aionescu says:
December 29, 2015 at 1:46 pm

It’s diaphora, the same tool that the blog post talks about i3
Leave a Reply
Name (required)
Mail (will not be published) (required)

Website

https://msdn.microsoft.com/en-us/library/windows/desktop/aa378832%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa378610%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms684190%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff556688%28v=vs.85%29.aspx
https://www.google.com/search?q=SYSTEM_LUID%200x3e7
https://msdn.microsoft.com/en-us/library/windows/desktop/aa374815%28v=vs.85%29.aspx
https://twitter.com/tiraniddo
http://googleprojectzero.blogspot.com/2015/02/a-tokens-tale_9.html
http://www.alex-ionescu.com/?cat=1
http://www.alex-ionescu.com/?feed=rss2&p=271
http://www.alex-ionescu.com/wp-trackback.php?p=271
http://www.alex-ionescu.com/?p=271&cpage=1#comment-69645
http://www.alex-ionescu.com/?p=271&cpage=1#comment-69712
http://www.alex-ionescu.com/?p=271&cpage=1#comment-110130

Submit Comment

Alex Ionescu's Blog is proudly powered by WordPress
Entries (RSS) and Comments (RSS).

http://wordpress.org/
http://www.alex-ionescu.com/?feed=rss2
http://www.alex-ionescu.com/?feed=comments-rss2

